## Bocconi

Early stopping for $L^{2}$-boosting in high-dimensional linear models

Bernhard Stankewitz
AIP 2023, Göttingen

Department of Decision Sciences
Bocconi University

## Early stopping vs. model selection

For a given iterative estimation procedure $\left(\widehat{F}^{(m)}\right)_{m \geq 0}$, choose a data driven iteration $\widehat{m}$ that neither over- nor underfits the data.

Bias variance decomposition


```
Model selection
    for all (m) \leqmmax do
        compute }\mp@subsup{\widehat{F}}{}{(m)}\mathrm{ and criterion(m)
    end for
    \widehat{m}}\leftarrow\mp@subsup{\operatorname{argmin}}{m\leqmmax criterion(m)}{m
```


## Early stopping

while condition $(m)$ is false do

$$
\begin{aligned}
& \text { compute } \widehat{F}^{(m)} \text { and condition }(m) \\
& m \leftarrow m+1
\end{aligned}
$$

end while
$\widehat{m} \leftarrow m$

Can computational and statistical complexity be treated at the same time?

- Used everywhere in machine learning. Limited theoretical understanding.
- Positive results as in Blanchard and Mathé [BM12], Blanchard, Hoffmann, and Reiß [BHR18a; BHR18b], Celisse and Wahl [CW21] yield substantial computational gains.
- Negative results lead to important questions about statistical optimality under information/computational constraints, see Blanchard, Hoffmann, and Reiß [BHR18a]. ${ }^{1}$
- Many possible applications and open questions.

[^0]Consider i.i.d. observations from a high dimensional linear model

$$
\begin{equation*}
Y_{i}=f^{*}\left(X_{i}\right)+\varepsilon_{i}=\sum_{j=1}^{p} \beta_{j}^{*} X_{i}^{(j)}+\varepsilon_{i}, \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

where $p \gg n$ with $\log (p) / n \rightarrow 0$ for $n \rightarrow \infty$ and we assume:
(A1) (SubGE): Conditional on the design, the noise terms are centered subgaussians with a joint parameter $\bar{\sigma}^{2}>0$.

## Examples

(a) (Gaussian Regression): For $\varepsilon_{1}, \ldots \varepsilon_{n} \sim N\left(0, \sigma^{2}\right)$ i.i.d., we have $\bar{\sigma}^{2}=\sigma^{2}$.
(b) (Classification): For classification, we consider i.i.d. observations

$$
\begin{equation*}
Y_{i} \sim \operatorname{Ber}\left(f^{*}\left(X_{i}\right)\right), \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

Then, the noise terms are given by $\varepsilon_{i}=Y_{i}-f^{*}\left(X_{i}\right)$.

## $L^{2}$-boosting

Consider i.i.d. observations from a high dimensional linear model

$$
\begin{equation*}
Y_{i}=f^{*}\left(X_{i}\right)+\varepsilon_{i}=\sum_{j=1}^{p} \beta_{j}^{*} X_{i}^{(j)}+\varepsilon_{i}, \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

## Algorithm 1.1 (Orthogonal matching pursuit (OMP))

1: $\widehat{F}^{(0)} \leftarrow 0, \widehat{J}_{0} \leftarrow \emptyset$
for $m=0,1,2, \ldots$ do
3: $\quad \widehat{j}_{m+1} \leftarrow \operatorname{argmax}_{j \leq p}\left|\left\langle Y-\widehat{F}^{(m)}, \frac{X^{(j)}}{\left\|X^{(j)}\right\|_{n}}\right\rangle_{n}\right|$
4: $\quad \widehat{J}_{m+1} \leftarrow \widehat{J}_{m} \cup\left\{\hat{j}_{m+1}\right\}$
5: $\quad \widehat{F}^{(m+1)} \leftarrow \widehat{\Pi}_{\widehat{J}_{m+1}} Y$
6: end for

- Inner product $\langle a, b\rangle_{n}:=n^{-1} \sum_{i=1}^{n} a_{i} b_{i}$ with norm $\|a\|_{n}:=\langle a, a\rangle_{n}^{1 / 2}$ for $a, b \in \mathbb{R}^{n}$.
- $\widehat{\Pi}_{J}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ orthogonal projection onto $\operatorname{span}\left(X^{(j)}, j \in J\right)$.
- Analysis of greedy algorithms Temlyakov [Tem00]. In a statistical setting Bühlmann [Bü06].


## Early stopping

## Early stopping according to the discrepancy principle

$$
\begin{equation*}
\tau:=\inf \left\{m \geq 0:\left\|Y-\widehat{F}^{(m)}\right\|_{n}^{2} \leq \kappa\right\} \quad \text { for some critical value } \quad \kappa \approx\|\varepsilon\|_{n}^{2} \tag{4}
\end{equation*}
$$

The empirical risk has the decomposition

$$
\begin{equation*}
\left\|\widehat{F}^{(m)}-f^{*}\right\|_{n}^{2}=\left\|\left(I-\widehat{\Pi}_{m}\right) f^{*}\right\|_{n}^{2}+\left\|\widehat{\Pi}_{m} \varepsilon\right\|_{n}^{2}=: b_{m}^{2}+s_{m} \tag{5}
\end{equation*}
$$

## Early stopping

## Early stopping according to the discrepancy principle

$$
\begin{equation*}
\tau:=\inf \left\{m \geq 0:\left\|Y-\widehat{F}^{(m)}\right\|_{n}^{2} \leq \kappa\right\} \quad \text { for some critical value } \quad \kappa \approx\|\varepsilon\|_{n}^{2} \tag{4}
\end{equation*}
$$

The empirical risk has the decomposition

$$
\begin{equation*}
\left\|\widehat{F}^{(m)}-f^{*}\right\|_{n}^{2}=\left\|\left(I-\widehat{\Pi}_{m}\right) f^{*}\right\|_{n}^{2}+\left\|\widehat{\Pi}_{m} \varepsilon\right\|_{n}^{2}=: b_{m}^{2}+s_{m} \tag{5}
\end{equation*}
$$

The residuals can be written as

$$
\begin{align*}
\left\|Y-\widehat{F}^{(m)}\right\|_{n}^{2} & =\left\|\left(I-\widehat{\Pi}_{m}\right) f^{*}\right\|_{n}^{2}+2\left\langle\left(I-\widehat{\Pi}_{m}\right) f, \varepsilon\right\rangle_{n}+\|\varepsilon\|_{n}^{2}-\left\|\widehat{\Pi}_{m} \varepsilon\right\|_{n}^{2}  \tag{6}\\
& =: b_{m}^{2}+2 c_{m}+\|\varepsilon\|_{n}^{2}-s_{m}
\end{align*}
$$

## Early stopping

## Early stopping according to the discrepancy principle

$$
\begin{equation*}
\tau:=\inf \left\{m \geq 0:\left\|Y-\widehat{F}^{(m)}\right\|_{n}^{2} \leq \kappa\right\} \quad \text { for some critical value } \quad \kappa \approx\|\varepsilon\|_{n}^{2} . \tag{4}
\end{equation*}
$$

The empirical risk has the decomposition

$$
\begin{equation*}
\left\|\widehat{F}^{(m)}-f^{*}\right\|_{n}^{2}=\left\|\left(I-\widehat{\Pi}_{m}\right) f^{*}\right\|_{n}^{2}+\left\|\widehat{\Pi}_{m} \varepsilon\right\|_{n}^{2}=: b_{m}^{2}+s_{m} \tag{5}
\end{equation*}
$$

The residuals can be written as

$$
\begin{align*}
\left\|Y-\widehat{F}^{(m)}\right\|_{n}^{2} & =\left\|\left(I-\widehat{\Pi}_{m}\right) f^{*}\right\|_{n}^{2}+2\left\langle\left(I-\widehat{\Pi}_{m}\right) f, \varepsilon\right\rangle_{n}+\|\varepsilon\|_{n}^{2}-\left\|\widehat{\Pi}_{m} \varepsilon\right\|_{n}^{2}  \tag{6}\\
& =: b_{m}^{2}+2 c_{m}+\|\varepsilon\|_{n}^{2}-s_{m} .
\end{align*}
$$

## Intuition for early stopping

Therefore, the stopping condition $\left\|Y-\widehat{F}^{(m)}\right\|_{n}^{2} \leq \kappa$ is equivalent to

$$
\begin{equation*}
b_{m}^{2}+2 c_{m} \leq s_{m}+\kappa-\|\varepsilon\|_{n}^{2} . \tag{7}
\end{equation*}
$$

For $\kappa \approx\|\varepsilon\|_{n}^{2}, \tau$ mimics the balanced oracle $m^{\mathfrak{b}}:=\inf \left\{m \geq 0: b_{m}^{2} \leq s_{m}\right\}$.

## A general oracle inequality for the empirical risk

Discrepancy principle with noise estimation

$$
\begin{equation*}
\tau:=\inf \left\{m \geq 0:\left\|Y-\widehat{F}^{(m)}\right\|_{n}^{2} \leq \kappa_{m}\right\} \quad \text { with } \quad \kappa_{m}:=\widehat{\sigma}^{2}+\frac{C_{\tau} m \log p}{n}, \quad m \geq 0 \tag{8}
\end{equation*}
$$

## A general oracle inequality for the empirical risk

## Discrepancy principle with noise estimation

$$
\begin{equation*}
\tau:=\inf \left\{m \geq 0:\left\|Y-\widehat{F}^{(m)}\right\|_{n}^{2} \leq \kappa_{m}\right\} \quad \text { with } \quad \kappa_{m}:=\widehat{\sigma}^{2}+\frac{C_{\tau} m \log p}{n}, \quad m \geq 0 \tag{8}
\end{equation*}
$$

## Theorem (Oracle inequality for the empirical risk)

Under Assumption (SubGE), the empirical risk at the stopping time $\tau$ in Equation (8) with $C_{\tau} \geq 8 \bar{\sigma}^{2}$ satisfies

$$
\begin{aligned}
\left\|\widehat{F}^{(\tau)}-f^{*}\right\|_{n}^{2} & \leq \min _{m \geq 0}\left(7\left\|\widehat{F}^{(m)}-f^{*}\right\|_{n}^{2}+\frac{\left(8 \bar{\sigma}^{2}+C_{\tau}\right) m \log p}{n}\right)+\left|\widehat{\sigma}^{2}-\|\varepsilon\|_{n}^{2}\right| \\
& \leq 7\left\|\widehat{F}^{\left(m^{\mathfrak{b}}\right)}-f^{*}\right\|_{n}^{2}+\frac{\left(8 \bar{\sigma}^{2}+C_{\tau}\right) m^{\mathfrak{b}} \log p}{n}+\left|\widehat{\sigma}^{2}-\|\varepsilon\|_{n}^{2}\right|
\end{aligned}
$$

with probability converging to one.

## Adaption for the population risk

Analogous to the empirical quantities:

- $\langle f, g\rangle_{L^{2}}:=\mathbb{E}\left(f\left(X_{1}\right) g\left(X_{1}\right)\right)$ with norm $\|f\|_{L^{2}}:=\langle f, f\rangle_{L^{2}}^{1 / 2}$ for functions $f, g \in L^{2}\left(\mathbb{P}^{X_{1}}\right)$, where $\mathbb{P}^{X_{1}}$ denotes the distribution of one observation of the covariates.
- $\Pi_{J}: L^{2}\left(\mathbb{P}^{X_{1}}\right) \rightarrow L^{2}\left(\mathbb{P}^{X_{1}}\right)$ denote the orthogonal projection with respect to $\langle\cdot, \cdot\rangle_{L^{2}}$ onto the span of the covariates $\left\{X_{1}^{(j)}: j \in J\right\}$.

Setting $\Pi_{m}:=\Pi_{\widehat{J}_{m}}$, the population risk decomposes into

$$
\begin{equation*}
\left\|\widehat{F}^{(m)}-f^{*}\right\|_{L^{2}}^{2}=\left\|\left(I-\Pi_{m}\right) f^{*}\right\|_{L^{2}}^{2}+\left\|\widehat{F}^{(m)}-\Pi_{m} f^{*}\right\|_{L^{2}}^{2}=B_{m}^{2}+S_{m}, \tag{9}
\end{equation*}
$$

with $B_{m}^{2}:=\left\|\left(I-\Pi_{m}\right) f^{*}\right\|_{L^{2}}^{2}$ and $S_{m}:=\left\|\widehat{\boldsymbol{F}}(m)-\Pi_{m} f^{*}\right\|_{L^{2}}^{2}$.
(A2) (Sparse): We assume one of the two following assumptions holds:
(i) $\beta^{*}$ is $s$-sparse for some $s \in \mathbb{N}_{0}$, i.e. $\left|\left\{j \leq p:\left|\beta_{j}^{*}\right| \neq 0\right\}\right| \leq s$. Additionally,

$$
s\left\|\beta^{*}\right\|_{1}^{2}=s\left(\sum_{j=1}^{p}\left|\beta_{j}^{*}\right|\right)^{2}=o\left(\frac{n}{\log p}\right), \quad\left\|f^{*}\right\|_{L^{2}}^{2} \leq C_{f^{*}} \quad \text { and } \quad \min _{j \in S}\left|\beta_{j}^{*}\right| \geq \underline{\beta} .
$$

(ii) $\beta^{*}$ is $\gamma$-sparse for some $\gamma \in[1, \infty)$, i.e., $\left\|\beta^{*}\right\|_{2} \leq C_{\ell^{2}}$ and

$$
\sum_{j \in J}\left|\beta_{j}^{*}\right| \leq C_{\gamma}\left(\sum_{j \in J}\left|\beta_{j}^{*}\right|^{2}\right)^{\frac{\gamma-1}{2 \gamma-1}} \quad \text { for all } J \subset\{1, \ldots, p\},
$$

where $C_{\ell^{2}}, C_{\gamma}>0$ are numerical constants.
(A3) (SubGD): The design variables are centered subgaussians in $\mathbb{R}^{p}$ with unit variance, i.e., there exists some $\rho>0$ such that for all $x \in \mathbb{R}^{p}$ with $\|x\|=1$,

$$
\mathbb{E} e^{u\left\langle x, X_{1}\right\rangle} \leq e^{\frac{u^{2} \rho^{2}}{2}}, \quad u \in \mathbb{R} \quad \text { and } \quad \operatorname{Var}\left(X_{1}^{(j)}\right)=1 \quad \text { for all } j \leq p .
$$

(A4) ( $\operatorname{CovB}$ ): The covariance matrix $\Gamma:=\operatorname{Cov}\left(X_{1}\right)$ of one design observation satisfies

$$
\begin{equation*}
\lambda_{\min }(\Gamma) \geq c_{\lambda}>0 \tag{10}
\end{equation*}
$$

and the sum of partial covariance terms are sufficiently bounded.

Under Assumptions (SubGE), (Sparse), (SubGD) and (CovB),

$$
B_{m}^{2} \lesssim\left\{\begin{array}{ll}
\exp \left(\frac{-c_{\text {Bias }} m}{s}\right) & \beta^{*} s \text {-sparse, }  \tag{11}\\
m^{1-2 \gamma} & \beta^{*} \gamma \text {-sparse }
\end{array} \quad \text { and } \quad S_{m} \lesssim \frac{\left(\bar{\sigma}^{2}+\rho^{4}\right) m \log p}{n}\right.
$$

using theory developed in $\operatorname{Ing}[\operatorname{lng} 20] .{ }^{2}$

The quantities balance at

$$
m_{s, \gamma}^{*}:= \begin{cases}C_{\text {supp }} s, & \beta^{*} s \text {-sparse }  \tag{12}\\ \left(\frac{n}{\left(\bar{\sigma}^{2}+\rho^{4}\right) \log p}\right)^{\frac{1}{2 \gamma}}, & \beta^{*} \gamma \text {-sparse }\end{cases}
$$

with

$$
\begin{align*}
\left\|\widehat{F}^{\left(m_{s, \gamma}^{*}\right)}-f^{*}\right\|_{L^{2}}^{2} & \lesssim \begin{cases}\frac{\bar{\sigma}^{2} s \log p}{n}, & \beta^{*} s \text {-sparse } \\
\left(\frac{\left(\bar{\sigma}^{2}+\rho^{4}\right) \log p}{n}\right)^{1-\frac{1}{2 \gamma}}, & \beta^{*} \gamma \text {-sparse }\end{cases}  \tag{13}\\
& =: \mathcal{R}(s, \gamma)
\end{align*}
$$

[^1]
## Theorem (Optimal adaptation for the population risk)

Under Assumptions (SubGE), (Sparse), (SubGD) and (CovB), choose $\widehat{\sigma}^{2}$ in Equation (8) such that there is a constant $C_{\text {Noise }}>0$ for which

$$
\left|\widehat{\sigma}^{2}-\|\varepsilon\|_{n}^{2}\right| \leq C_{\text {Noise }} \mathcal{R}(s, \gamma)
$$

with probability converging to one. Then, the population risk at the stopping time $\tau$ with $C_{\tau}=c\left(\bar{\sigma}^{2}+\rho^{4}\right)$ for any $c>0$ satisfies

$$
\left\|\widehat{F}^{(\tau)}-f^{*}\right\|_{L^{2}}^{2} \leq C_{\text {PopRisk }} \mathcal{R}(s, \gamma)
$$

with probability converging to one for a constant $C_{\text {PopRisk }}>0$.

## Theorem (Optimal adaptation for the population risk)

Under Assumptions (SubGE), (Sparse), (SubGD) and (CovB), choose $\widehat{\sigma}^{2}$ in Equation (8) such that there is a constant $C_{\text {Noise }}>0$ for which

$$
\left|\widehat{\sigma}^{2}-\|\varepsilon\|_{n}^{2}\right| \leq C_{\text {Noise }} \mathcal{R}(s, \gamma)
$$

with probability converging to one. Then, the population risk at the stopping time $\tau$ with $C_{\tau}=c\left(\bar{\sigma}^{2}+\rho^{4}\right)$ for any $c>0$ satisfies

$$
\left\|\widehat{F}^{(\tau)}-f^{*}\right\|_{L^{2}}^{2} \leq C_{\text {PopRisk }} \mathcal{R}(s, \gamma)
$$

with probability converging to one for a constant $C_{\text {PopRisk }}>0$.

## Preliminary result

Sequential adaptation works when $\|\varepsilon\|_{n}^{2}$ can be estimated well.

## Noise estimation

## Proposition (Fast noise estimation)

Under Assumptions (SubGE), (Sparse) and (CovB) with Gaussian design $\left(X_{i}\right)_{i \leq n} \sim N(0, \Gamma)$ i.i.d., set $\xi>1$ and $\lambda_{0}=C_{\lambda_{0}}(\xi+1) /(\xi-1) \sqrt{\log (p) / n}$ with $C_{\lambda_{0}} \geq 2 C_{\varepsilon} \bar{\sigma} / \underline{\sigma}$. Then, the Scaled Lasso noise estimator $\widehat{\sigma}^{2}$ from Sun and Zhang $[S Z 12]^{3}$ satisfies

$$
\left|\widehat{\sigma}^{2}-\|\varepsilon\|_{n}^{2}\right| \leq C \begin{cases}\frac{\bar{\sigma}^{2} s \log p}{n}, & \beta^{*} \text { s-sparse } \\ \left(\frac{\bar{\sigma}^{2} \log p}{n}\right)^{1-1 /(2 \gamma)}, & \beta^{*} \gamma \text {-sparse }\end{cases}
$$

with probability converging to one.

- $\|\varepsilon\|_{n}^{2}$ is easier to estimate than $\operatorname{Var}\left(\varepsilon_{1}\right)$.
- Only need to solve one convex optimization problem.
- Together with the preliminary results, we obtain full sequential adaptation.

[^2]
## An improved two-step procedure

Perform second step based on a high-dimensional Akaike-information criterion
$\tau_{\text {two-step }}:=\underset{m \leq \tau}{\operatorname{argmin}} \operatorname{AIC}(m) \quad$ with $\quad \operatorname{AIC}(m):=\left\|Y-\widehat{F}^{(m)}\right\|_{n}^{2}+\frac{C_{\text {AIC }} m \log p}{n}, \quad m \geq 0$.

## An improved two-step procedure

Perform second step based on a high-dimensional Akaike-information criterion
$\tau_{\text {two-step }}:=\underset{m \leq \tau}{\operatorname{argmin}} \operatorname{AIC}(m) \quad$ with $\quad \operatorname{AIC}(m):=\left\|Y-\widehat{F}^{(m)}\right\|_{n}^{2}+\frac{C_{\text {AIC }} m \log p}{n}, \quad m \geq 0$.

## Theorem (Two-step procedure)

Under Assumptions (SubGE), (Sparse), (SubGD) and (CovB), choose $\widehat{\sigma}^{2}$ such that

$$
\widehat{\sigma}^{2} \leq\|\varepsilon\|_{n}^{2}+C \mathcal{R}(s, \gamma)
$$

with probability converging to one. Then, for any choice $C_{\tau} \geq 0$ in (8) with $c \geq 0$ and $C_{A I C}=C\left(\bar{\sigma}^{2}+\rho^{4}\right)$ with $C>0$ large enough, the two-step procedure satisfies that with probability converging to one, $\tau_{\text {two-step }} \geq \tilde{m}_{s, \gamma, G}$ from Equation (??) for some $G>0$. On the corresponding event,

$$
\left\|\widehat{F}^{\left(\tau_{\text {twostep }}\right)}-f^{*}\right\|_{L^{2}}^{2} \leq C_{\text {Risk }} \mathcal{R}(s, \gamma)
$$

for some constant $C_{\text {Risk }}>0$.

## A small simulation example



|  |  |
| :--- | ---: |
| True noise | 19.8 sec |
| Estimated noise | 32.0 sec |
| Two-step | 49.6 sec |
| HDAIC | 411.6 sec |
| Lasso CV | 164.3 sec |

Figure 1: Empirical risk for different methods. Table 1: Computation times for different methods.

## Early stopping for $L^{2}$-boosting in high-dimensional linear models

## Bernhard Stankewitz ${ }^{1}$

${ }^{1}$ Deportmeat of Mathernatics, Humboldt-Utriversaty of Berina, e-mail: हt ankobocnath.hu-ber 11n .de
Abstract: Increasingly high-dimensioxal data ests require that estimation methods do not only satisfy statistical guarantess but also remain computationally feasible. In this context we consider $L^{2}$ boosting vian orthogonals matchaing pursuit in a h high-ditincnsional linear model ense that its computation is besed on the first $\tau$ therations only. This approach is much ense that its computation is besed on the first $r$ iterations only. This approach is muich
lefas costly than established model selection criteria, that require the computation of the full possting path. We prove that sequential carly stopping perserves statistical optimality in stablisbed optimal convergence rates for the population risk. Finally, an extensive simulation study shows that at an immensely reduecd computational cost, the performance of these type of methods is on par with other state of the art algorithms such as the crosesulidated Lasso or model selection via a high dimensional Aknike criterion based on the fall boosting path
MSC2020 subject clasaifications: Primary 62G05, 62J07; secondary 62F35
Keywords and phrasest Early stopping, Discrepancy principle, Adaptive eatimation, Or arle inequalities, L2-Borating, Onthogomal matching pursuit

1. Introduction
lterative estimation procedures typically have to be combined with a data-driven choice $\hat{m}$ of the effectively selected iteration in order to avoid under- as well as over-fitting. In the context of increasingly high-dimensional data sets, which require that estimation methods do not only provide statistical guarantees but also ensure computational feasibility, established model selection criteria for $\bar{m}$ such as cross-validation, unbiased risk estimation, Akaike's information criterion or Lepski's bolancing principle suffer from a disadvantage: They involve computing the full iteration path up to some large $m_{\max }$, which is computationally costly, even if the final choice $\widehat{m}$ is much smaller than $m_{\text {max }}$. In comparison, seguential corly stopping, i.e., halting the procedure at an iteration $\widehat{m}$ depending only on the iterates $m \leq \bar{m}$, can substantially reduce computational complexity while depaintaining guarantees in terms of adaptivity. For inverse problems, results were established in Blanchard and Mathé [5], Blanchard et al. [3, 4], Stankewitz [20] and Jahn [14]. A Poisson inverse problem was treated in Mika and Szkutnik (16] and general kernel learning in Celisse and Wahl [8].
In this work, we analyze sequential early stopping for an iterative boosting algorithm applied to data $Y=\left(Y_{i}\right)_{i \leq m}$ from a high-dimensional linear model

$$
\begin{equation*}
Y_{i}=f^{x}\left(X_{i}\right)+\varepsilon_{1}=\sum_{j=1}^{p} \beta_{j}^{x} X_{i}^{(0)}+\varepsilon_{i t} \quad i=1, \ldots, n, \tag{1.1}
\end{equation*}
$$

## References i

## References

[BHR18a] G. Blanchard, M. Hoffmann, and M. Reiß. "Early stopping for statistical inverse problems via truncated SVD estimation". In: Electronic Journal of Statistics 12.2 (2018), pp. 3204-3231.
[BHR18b] G. Blanchard, M. Hoffmann, and M. Reiß. "Optimal adaptation for early stopping in statistical inverse problems". In: SIAM/ASA Journal of Uncertainty Quantification 6.3 (2018), pp. 1043-1075.
[BM12] G. Blanchard and P. Mathé. "Discrepancy principle for statistical inverse problems with application to conjugate gradient iteration". In: Inverse Problems 28.11 (2012), pp. 115011/1-115011/23.
[Bü06] P. Bühlmann. "Boosting for high-dimensional linear models". In: The annals of statistics 34.2 (2006), pp. 559-583.
[CW21] A. Celisse and M. Wahl. "Analyzing the Discrepancy Principle for Kernelized Spectral Filter Learning Algorithms". In: Journal of Machine Learning Research 22.76 (2021), pp. 1-59.

## References if

[Ing20] C. Ing. "Model selection for high-dimensional linear regression with dependent observations". In: The Annals of Statistics 48 (2020), pp. 1959-1980.
[SZ12] T. Sun and C.-H. Zhang. "Scaled sparse linear regression". In: Biometrika 99.4 (2012), pp. 879-898.
[Sta22] B. Stankewitz. Early stopping for L2-boosting in high-dimensional linear models. 2022. URL: https://arxiv.org/abs/2210.07850.
[Tem00] V. N. Temlyakov. "Weak greedy algorithms". In: Advances in Computational Mathematics 12 (2000), pp. 213-227.


[^0]:    ${ }^{1}$ G. Blanchard, M. Hoffmann, and M. Reiß. "Early stopping for statistical inverse problems via truncated SVD estimation". In: Electronic Journal of Statistics 12.2 (2018), pp. 3204-3231.

[^1]:    ${ }^{2}$ C. Ing. "Model selection for high-dimensional linear regression with dependent observations". In: The Annals of Statistics 48 (2020), pp.1959-1980.

[^2]:    ${ }^{3}$ T. Sun and C. H. Zhang "Scaled sparse linear regression". In: Biometrika 99.4 (2012), pp. 879-898.

