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Early stopping vs. model selection

For a given iterative estimation procedure (F̂ (m))m≥0, choose a data driven iteration

m̂ that neither over- nor underfits the data.

Model selection
for all (m) ≤ mmax do

compute F̂ (m) and criterion(m)

end for

m̂ ← argminm≤mmax
criterion(m)

Early stopping
while condition(m) is false do

compute F̂ (m) and condition(m)

m ← m + 1

end while

m̂ ← m

Can computational and statistical complexity be treated at the same time?
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▶ Used everywhere in machine learning. Limited theoretical understanding.

▶ Positive results as in Blanchard and Mathé [BM12], Blanchard, Hoffmann, and

Reiß [BHR18a; BHR18b], Celisse and Wahl [CW21] yield substantial

computational gains.

▶ Negative results lead to important questions about statistical optimality under

information/computational constraints, see Blanchard, Hoffmann, and Reiß

[BHR18a].1

▶ Many possible applications and open questions.

1G. Blanchard, M. Hoffmann, and M. Reiß. ”Early stopping for statistical inverse problems via truncated SVD

estimation”. In: Electronic Journal of Statistics 12.2 (2018), pp. 3204-3231.
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L2-boosting

Consider i.i.d. observations from a high dimensional linear model

Yi = f ∗(Xi ) + εi =

p∑
j=1

β∗j X
(j)
i + εi , i = 1, . . . , n, (1)

where p ≫ n with log(p)/n→ 0 for n→∞ and we assume:

(A1) (SubGE): Conditional on the design, the noise terms are centered subgaussians

with a joint parameter σ2 > 0.

Examples

(a) (Gaussian Regression): For ε1, . . . εn ∼ N(0, σ2) i.i.d., we have σ2 = σ2.

(b) (Classification): For classification, we consider i.i.d. observations

Yi ∼ Ber(f ∗(Xi )), i = 1, . . . , n. (2)

Then, the noise terms are given by εi = Yi − f ∗(Xi ).
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L2-boosting

Consider i.i.d. observations from a high dimensional linear model

Yi = f ∗(Xi ) + εi =

p∑
j=1

β∗j X
(j)
i + εi , i = 1, . . . , n. (3)

Algorithm 1.1 (Orthogonal matching pursuit (OMP))

1: F̂ (0) ← 0, Ĵ0 ← ∅
2: for m = 0, 1, 2, . . . do

3: ĵm+1 ← argmaxj≤p

∣∣∣〈Y − F̂ (m), X (j)

∥X (j)∥n

〉
n

∣∣∣
4: Ĵm+1 ← Ĵm ∪

{
ĵm+1

}
5: F̂ (m+1) ← Π̂

Ĵm+1
Y

6: end for

▶ Inner product ⟨a, b⟩n := n−1
∑n

i=1 aibi with norm ∥a∥n := ⟨a, a⟩1/2n for a, b ∈ Rn.

▶ Π̂J : Rn → Rn orthogonal projection onto span(X (j), j ∈ J).

▶ Analysis of greedy algorithms Temlyakov [Tem00]. In a statistical setting

Bühlmann [Bü06].
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Early stopping

Early stopping according to the discrepancy principle

τ := inf{m ≥ 0 : ∥Y − F̂ (m)∥2n ≤ κ} for some critical value κ ≈ ∥ε∥2n. (4)

The empirical risk has the decomposition

∥F̂ (m) − f ∗∥2n = ∥(I − Π̂m)f
∗∥2n + ∥Π̂mε∥2n =: b2m + sm. (5)

The residuals can be written as

∥Y − F̂ (m)∥2n = ∥(I − Π̂m)f
∗∥2n + 2⟨(I − Π̂m)f , ε⟩n + ∥ε∥2n − ∥Π̂mε∥2n (6)

=: b2m + 2cm + ∥ε∥2n − sm.

Intuition for early stopping

Therefore, the stopping condition ∥Y − F̂ (m)∥2n ≤ κ is equivalent to

b2m + 2cm ≤ sm + κ− ∥ε∥2n. (7)

For κ ≈ ∥ε∥2n, τ mimics the balanced oracle mb := inf{m ≥ 0 : b2m ≤ sm}.
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A general oracle inequality for the empirical risk

Discrepancy principle with noise estimation

τ := inf{m ≥ 0 : ∥Y − F̂ (m)∥2n ≤ κm} with κm := σ̂2 +
Cτm log p

n
, m ≥ 0.

(8)

Theorem (Oracle inequality for the empirical risk)

Under Assumption (SubGE), the empirical risk at the stopping time τ in Equation

(8) with Cτ ≥ 8σ2 satisfies

∥F̂ (τ) − f ∗∥2n ≤ min
m≥0

(
7∥F̂ (m) − f ∗∥2n +

(8σ2 + Cτ )m log p

n

)
+ |σ̂2 − ∥ε∥2n|

≤ 7∥F̂ (mb) − f ∗∥2n +
(8σ2 + Cτ )mb log p

n
+ |σ̂2 − ∥ε∥2n|

with probability converging to one.
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Adaption for the population risk

Analogous to the empirical quantities:

▶ ⟨f , g⟩L2 := E(f (X1)g(X1)) with norm ∥f ∥L2 := ⟨f , f ⟩1/2
L2

for functions

f , g ∈ L2(PX1 ), where PX1 denotes the distribution of one observation of the

covariates.

▶ ΠJ : L2(PX1 )→ L2(PX1 ) denote the orthogonal projection with respect to ⟨·, ·⟩L2
onto the span of the covariates {X (j)

1 : j ∈ J}.

Setting Πm := Π
Ĵm

, the population risk decomposes into

∥F̂ (m) − f ∗∥2
L2

= ∥(I − Πm)f
∗∥2

L2
+ ∥F̂ (m) − Πmf

∗∥2
L2

= B2
m + Sm, (9)

with B2
m := ∥(I − Πm)f ∗∥2L2 and Sm := ∥F̂ (m) − Πmf ∗∥2L2 .
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(A2) (Sparse): We assume one of the two following assumptions holds:

(i) β∗ is s-sparse for some s ∈ N0, i.e. |{j ≤ p : |β∗
j | ̸= 0}| ≤ s. Additionally,

s∥β∗∥2
1 = s

( p∑
j=1

|β∗
j |
)2

= o
( n

log p

)
, ∥f ∗∥2

L2
≤ Cf ∗ and min

j∈S
|β∗

j | ≥ β.

(ii) β∗ is γ-sparse for some γ ∈ [1,∞), i.e., ∥β∗∥2 ≤ Cℓ2 and

∑
j∈J

|β∗
j | ≤ Cγ

(∑
j∈J

|β∗
j |

2
) γ−1

2γ−1 for all J ⊂ {1, . . . , p},

where Cℓ2 ,Cγ > 0 are numerical constants.

(A3) (SubGD): The design variables are centered subgaussians in Rp with unit

variance, i.e., there exists some ρ > 0 such that for all x ∈ Rp with ∥x∥ = 1,

Eeu⟨x,X1⟩ ≤ e
u2ρ2

2 , u ∈ R and Var(X
(j)
1 ) = 1 for all j ≤ p.

(A4) (CovB): The covariance matrix Γ := Cov(X1) of one design observation satisfies

λmin(Γ) ≥ cλ > 0 (10)

and the sum of partial covariance terms are sufficiently bounded.
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Under Assumptions (SubGE), (Sparse), (SubGD) and (CovB),

B2
m ≲

exp
(−cBiasm

s

)
β∗ s-sparse,

m1−2γ β∗ γ-sparse

and Sm ≲
(σ2 + ρ4)m log p

n
(11)

using theory developed in Ing [Ing20].2

The quantities balance at

m∗s,γ :=


Csupps, β∗ s-sparse,( n

(σ2 + ρ4) log p

) 1
2γ

, β∗ γ-sparse
(12)

with

∥F̂ (m∗
s,γ ) − f ∗∥2

L2
≲


σ2s log p

n
, β∗ s-sparse,( (σ2 + ρ4) log p

n

)1− 1
2γ

, β∗ γ-sparse

(13)

=: R(s, γ).

2C. Ing. ”Model selection for high-dimensional linear regression with dependent observations”. In: The Annals of

Statistics 48 (2020), pp.1959-1980.
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Theorem (Optimal adaptation for the population risk)

Under Assumptions (SubGE), (Sparse), (SubGD) and (CovB), choose σ̂2 in

Equation (8) such that there is a constant CNoise > 0 for which

|σ̂2 − ∥ε∥2n| ≤ CNoiseR(s, γ)

with probability converging to one. Then, the population risk at the stopping time τ

with Cτ = c(σ2 + ρ4) for any c > 0 satisfies

∥F̂ (τ) − f ∗∥2
L2
≤ CPopRiskR(s, γ)

with probability converging to one for a constant CPopRisk > 0.

Preliminary result

Sequential adaptation works when ∥ε∥2n can be estimated well.
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Noise estimation

Proposition (Fast noise estimation)

Under Assumptions (SubGE), (Sparse) and (CovB) with Gaussian design

(Xi )i≤n ∼ N(0, Γ) i.i.d., set ξ > 1 and λ0 = Cλ0
(ξ + 1)/(ξ − 1)

√
log(p)/n with

Cλ0
≥ 2Cεσ/σ. Then, the Scaled Lasso noise estimator σ̂2 from Sun and Zhang

[SZ12]3 satisfies

|σ̂2 − ∥ε∥2n| ≤ C


σ2s log p

n
, β∗ s-sparse,(σ2 log p

n

)1−1/(2γ)
, β∗ γ-sparse

with probability converging to one.

▶ ∥ε∥2n is easier to estimate than Var(ε1).

▶ Only need to solve one convex optimization problem.

▶ Together with the preliminary results, we obtain full sequential adaptation.

3T. Sun and C. H. Zhang ”Scaled sparse linear regression”. In: Biometrika 99.4 (2012), pp. 879-898.
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An improved two-step procedure

Perform second step based on a high-dimensional Akaike-information criterion

τtwo-step := argmin
m≤τ

AIC(m) with AIC(m) := ∥Y − F̂ (m)∥2n +
CAICm log p

n
, m ≥ 0.

(14)

Theorem (Two-step procedure)

Under Assumptions (SubGE), (Sparse), (SubGD) and (CovB), choose σ̂2 such that

σ̂2 ≤ ∥ε∥2n + CR(s, γ)

with probability converging to one. Then, for any choice Cτ ≥ 0 in (8) with c ≥ 0

and CAIC = C(σ2 + ρ4) with C > 0 large enough, the two-step procedure satisfies

that with probability converging to one, τtwo-step ≥ m̃s,γ,G from Equation (??) for

some G > 0. On the corresponding event,

∥F̂ (τtwo-step) − f ∗∥2
L2
≤ CRiskR(s, γ)

for some constant CRisk > 0.
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A small simulation example

Figure 1: Empirical risk for different methods.

True noise 19.8 sec

Estimated noise 32.0 sec

Two-step 49.6 sec

HDAIC 411.6 sec

Lasso CV 164.3 sec

Table 1: Computation times for different

methods.

14



[Sta22] Early stopping for L2-boosting in high

dimensional linear models. 2022.

https://arxiv.org/abs/2210.07850

Thank you!
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