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Early stopping vs. model selection

For a given iterative estimation procedure (F(’"))mzo, choose a data driven iteration
m that neither over- nor underfits the data.
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while condition(m) is false do

compute F(™) and condition(m)
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Can computational and statistical complexity be treated at the same time?



» Used everywhere in machine learning. Limited theoretical understanding.

> Positive results as in Blanchard and Mathé [BM12], Blanchard, Hoffmann, and
ReiB [BHR18a; BHR18b], Celisse and Wahl [C\W21] yield substantial
computational gains.

» Negative results lead to important questions about statistical optimality under
information /computational constraints, see Blanchard, Hoffmann, and ReiB

[BHR18a].!

» Many possible applications and open questions.

1G. Blanchard, M. Hoffmann, and M. ReiB. " Early stopping for statistical inverse problems via truncated SVD
estimation”. In: Electronic Journal of Statistics 12.2 (2018), pp. 3204-3231.



Consider i.i.d. observations from a high dimensional linear model
V=)= gxP b, =1 (1)
j=1

where p > n with log(p)/n — 0 for n — co and we assume:

: Conditional on the design, the noise terms are centered subgaussians
with a joint parameter 2 > 0.

Examples
(a) (Gaussian Regression): For c1,...c, ~ N(0,5?) i.i.d., we have 32 = 2.

(b) (Classification): For classification, we consider i.i.d. observations
Y: ~ Ber(f* (X)), i=1,...,n. (2)

Then, the noise terms are given by ; = Y; — £*(X;).



Consider i.i.d. observations from a high dimensional linear model

Yi=f*(X)+e = Zﬁxf’+s,, i=1,...,n 3)
j=1

Algorithm 1.1 (Orthogonal matching pursuit (OMP))
1 FO 0,0« 0

2 for m:071727--- do

3: jm+1 < argmax;<, ’<y _ F(m) X7<J)>

> IXO[a
4: j\m+1 = j\m U {.Tm+1}
5: Flm+1) HA Y
m+1
6: end for

> Inner product (a, by, := n~1 37 a;b; with norm ||al|, := (a, a);/2 for a, b € R".
> ﬁ_} : R" — R" orthogonal projection onto span(X(f),j e J).

> Analysis of greedy algorithms Temlyakov [ ]. In a statistical setting
Bithlmann [ 1.



Early stopping

Early stopping according to the discrepancy principle

ri=inf{m>0:||Y — FM|2 <k} for some critical value x ~ |||2. (4)

The empirical risk has the decomposition

IEC™ — 17 = 10 = Am)F* 13 + [IAmell? =2 b7, + sm. ®)
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Early stopping

Early stopping according to the discrepancy principle
=inf{m>0:|Y —F™M|2 <k} for some critical value & ~ ||]3. (4)
The empirical risk has the decomposition

IEC™ — 17 = 10 = Am)F* 13 + [IAmell? =2 b7, + sm. ®)

The residuals can be written as

Y = FM 2 = (1 = Am) )12 + 20 = Tim)F, €)n + llel|? — Fime]|? (6)
B2, + 2¢m + |le||? —

Intuition for early stopping

Therefore, the stopping condition ||Y — F(m )||2 < & is equivalent to

B, + 2¢m < sm + £ — [l )

For x = ||€||2, T mimics the balanced oracle m® := inf{m > 0: b2 < spm}.




A general oracle inequality for the empirical risk

Discrepancy principle with noise estimation

ri=inf{m>0:[|Y — FM|2 <k} with k=02 + ——2— m > 0.



A general oracle inequality for the empirical risk

Discrepancy principle with noise estimation

= Crml
ri=inf{m>0: Y — FM|2 < kn} with kp =02+ w, m > 0.
n
(8)
Theorem (Oracle inequality for the empirical risk)
Under Assumption , the empirical risk at the stopping time T in Equation

(8) with C. > 852 satisfies
=l * . = * (862 € )mlogp ~
IF™ — #7112 < min (7)1F0 — 22 + S8R 152 2
m>0 n

(b
<STIF) — 7 +

(8% + C;)mblogp
BT+ I8P | 52 ey

with probability converging to one.



Adaption for the population risk

Analogous to the empirical quantities:

> (f,g)2 = E(f(X1)g(X1)) with norm |[|f]|,2 := (f, f)if for functions
f,g € L2(PX1), where PXt denotes the distribution of one observation of the
covariates.

> M, : L2(PX1) — [2(PX1) denote the orthogonal projection with respect to (-, -),2
onto the span of the covariates {XU 1jeJ}

Setting My := M7 , the population risk decomposes into
IF™ =3 = 10 = Mm)F* 32 + IF™ = Mnf (|2 = B} + Sm, (9)

with B2 = [|(1 — M) f* |12, and Sy == [|[F0™ — Npf*|2,



(A2) (Sparse): We assume one of the two following assumptions holds:
(i) B™ is s-sparse for some s € Ny, i.e. [{j < p:[B]| # 0}| < s. Additionally,

log p JES

P
s I =s(D21871) =o(==), I IE < e and  min|s| > 6.
j=1

(if) B™ is y-sparse for some v € [1,0), i.e., [|8"[|2 < C,2 and

=1
SIBI<G(IE )P forallJc {1, p},
jed j€Jd

where Cy2, C, > 0 are numerical constants.

(A3) (SubGD): The design variables are centered subgaussians in RP with unit
variance, i.e., there exists some p > 0 such that for all x € RP with ||x|| =1,

BL

Ee'CX) < e ueR  and  Var(XY)=1 forallj<p.

(A4) (CovB): The covariance matrix I" := Cov(Xj) of one design observation satisfies
Amin(F) > cx >0 (10)

and the sum of partial covariance terms are sufficiently bounded.



Under Assumptions (SubGE), (Sparse), (SubGD) and (CovB),

exp (M> B* s-sparse, (32 + p*)mlog p
B2 < s and S, S ———F———— (11)
mt—2Y B* ~-sparse n
using theory developed in Ing [Ing20].2
The quantities balance at
CsuppS, B* s-sparse,
m:,y = < n )% (12)
— , B* y-sparse
(@ + p*)log p K
with
) w’ B* s-sparse,
[FMsr) — £*112, S 4 (13)
(32+p4)|0gp>1*% -
—_— , -sparse
" B* y-sp
=:R(s,7)-

2c. Ing. " Model selection for high-dimensional linear regression with dependent observations”. In: The Annals of
Statistics 48 (2020), pp.1959-1980.



Theorem (Optimal adaptation for the population risk)

Under Assumptions (SubGE), (Sparse), (SubGD) and (CovB), choose G2 in
Equation (8) such that there is a constant Cpyise > O for which

152 — llell3] < ChoiseR(s,7)

with probability converging to one. Then, the population risk at the stopping time T
with Cr = c(a? + p*) for any ¢ > 0 satisfies

IF™ — £*12, < CpopriskR(S,7)

with probability converging to one for a constant Cpoprisk > 0.



Theorem (Optimal adaptation for the population risk)

Under Assumptions (SubGE), (Sparse), (SubGD) and (CovB), choose G2 in
Equation (8) such that there is a constant Cpyise > O for which

152 — llell3] < ChoiseR(s,7)

with probability converging to one. Then, the population risk at the stopping time T
with Cr = c(a? + p*) for any ¢ > 0 satisfies

IF™ — £*12, < CpopriskR(S,7)

with probability converging to one for a constant Cpoprisk > 0.

Preliminary result

Sequential adaptation works when ||€]|2 can be estimated well.



Noise estimation

Proposition (Fast noise estimation)

Under Assumptions and with Gaussian design

(Xi)i<n ~ N(O,T) iid., set§ > 1 and Mg = Cyy(§ +1)/(& — 1)+/log(p)/n with

S 2 2C.o/g. Then, the Scaled Lasso noise estimator G2 from Sun and Zhang
[ P satisfies

—2

slo

Uigp, B* s-sparse,

2 2 n

g — |le <C

| leflal < 2 log p\1-1/(27) "
<7) , B ~-sparse

n

with probability converging to one.

> |l||2 is easier to estimate than Var(e1).
» Only need to solve one convex optimization problem.

» Together with the preliminary results, we obtain full sequential adaptation.

3T. Sun and C. H. Zhang "Scaled sparse linear regression”. In: Biometrika 99.4 (2012), pp. 879-898.



An improved two-step procedure

Perform second step based on a high-dimensional Akaike-information criterion

Ttwo-step = argmin AIC(m) with AIC(m) :=||Y — E("’)H% +

m<T

Caicm log p
n b



An improved two-step procedure

Perform second step based on a high-dimensional Akaike-information criterion

=~ C I
Ttwo-step = argmin AIC(m) with AIC(m) :=||Y — Fm)|2 4 M7 m > 0.

m<T -
(14)
Theorem (Two-step procedure)
Under Assumptions § § and , choose 52 such that

5° < |lel|3 + CR(s,)

with probability converging to one. Then, for any choice C; > 0 in (8) with ¢ > 0
and Cyic = C(G% + p*) with C > 0 large enough, the two-step procedure satisfies
that with probability converging to one, Ttwo-step > Ms ~,G from Equation (77) for
some G > 0. On the corresponding event,

|| F(reno-step) f*”i? < CriskR(s,7)

for some constant Cgjsi > 0.



A small simulation example

Empirical risk |[F™ — £|2

' True noise 19.8 sec

008 Estimated noise 32.0 sec
0.06 Two-step 49.6 sec
008 * HDAIC 411.6 sec
Lasso CV 164.3 sec

True noise Estim. noise  HDAIC Two-step Oracle LassoCV

Figure 1: Empirical risk for different methods. Table 1: Computation times for different
methods.
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1. Introduction

Iterative estimation procedures typically have to be combined with a data-driven choice i of
the afectivoly sleted iteraion in order to avoid nor s well a over-fting In tho context of
increasingly high which only provide
tatistcal guarantecs bu also cnsure computational feasibiliy, established model seection eiteria

x i such as cross-validation, unbiased risk estimation, Akaike's information criterion o Lepski’s
balancing principle suffer from a disadvantage: They involve computing the full l'mannu path up
10 some 1a1ge My, which is computationally costly, even if the final choice i is much smaller
than Mimss. In comparison, sequential carly stopping, Lc., halting the procedure at an iteration
depending only on the iterates m < i, can substantially recuce computational complexity while
maintaining guarantees in terms of adaptivity, For inverse problems, results were established in
Blanchard and Mathé (5], Blanchard et al. [3, 4], Stankewitz 20] and Jahn [14]. A Poisson inverse
problem was treated in Mika and Skntnik [16] and general kernel learning in Celisse and Wahl
8l

T this work, we analyze sequential early stopping for an iterative boosting algorithm applied
10 data ¥ = (¥,),<,, from a high-dimensional linear mode

Vs se =YX he, o1, )
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